Cách Sử Máy Tính Casio Để Thi Máy Tính Casio Lớp 9, Giải Toán Trên Máy Tính Casio

Cách Sử Máy Tính Casio Để Thi Máy Tính Casio Lớp 9, Giải Toán Trên Máy Tính Casio

KỲ THI HỌC SINH GIỎI CẤP TỈNH GIẢI TOÁN TRÊN MÁY TÍNH CASIO NĂM HỌC 2008 – 2009 MÔN: TOÁN LỚP 9 THCS

Quy định:

1 / Thí sinh được sử dụng hai loại máy tính CASIO fx-500MS và CASIO fx-570 MS, hoặc các loại máy có tính năng tương tự .
Đang xem : Cách sử máy tính casio để thi máy tính casio lớp 9

2/ Nếu không yêu cầu thêm hãy tính chính xác đến 4chữ số thập phân (ghi vào ô kết quả tất cả những chữ số đọc được trên màn hình)

3 / Thí sinh làm bài trực tiếp vào đề thi này. Nếu khung làm bài không đủ thì hoàn toàn có thể làm tiếp ở mặt sau trang đề ( quan tâm ghi rõ câu ) .

Bài 1: (2 điểm). Biết:

*

Tìm các số tự nhiên a, b, c, d, e, f, g .

Bài 2: (2 điểm)

a ) Tìm ƯCLN và BCNN của 227285032 và 3896202912 .
b ) Tìm các ước nguyên tố của A = 19213 + 21473 + 25993

Bài 3: (2 điểm):

Mọi Người Cũng Xem   Cách xếp loại học lực cấp 1, cấp 2, cấp 3 năm 2022

Cho đa thức P ( x ) = x5 + ax4 + bx3 + c02 + dx + e và cho biết P ( 1 ) 7, P ( 2 ) = 16, P ( 3 ) = 31, P ( 4 ) = 52, P ( 5 ) = 79 .
Tính P ( 6 ), P ( 7 ), P ( 8 ), P ( 9 ), P ( 10 ), P ( 11 )

Bài 4: (2 điểm):

a. Dân số của một thành phố năm 2008 là 350.000 người. Hỏi năm học 2008 – 2009, có bao nhiêu học viên lớp 1 đến trường, biết trong 10 năm trở lại đây tỉ lệ tăng dân số mỗi năm của thành phố là 1,4 % và thành phố thực thi tốt chủ trương 100 % trẻ nhỏ đúng độ tuổi đều đến lớp 1 ? ( Kết quả làm tròn đến hàng đơn vị chức năng )
b. Nếu đến năm học năm nay – 2017, thành phố chỉ phân phối được 120 phòng học cho học viên lớp 1, mỗi phòng dành cho 35 học viên thì phải kiềm chế tỉ lệ tăng dân số mỗi năm là bao nhiêu, mở màn từ năm 2008 ? ( Kết quả lấy với 2 chữ số ở phần thập phân )

Bài 5: (2 điểm)

Cho ba hàm số :
*
a ) Vẽ đồ thị của ba hàm số trên mặt phẳng tọa độ của Oxy .
b ) Tìm tọa độ giao điểm A ( xA, yA ) của hai đồ thị hàm số ( 1 ) và ( 2 ) ; giao điểm B ( xB, yB ) của hai đồ thị hàm số ( 2 ) và ( 3 ) ; giao điểm C ( xC, yC ) của hai đồ thị hàm số ( 1 ) và ( 3 ) ( hiệu quả dưới dạng phân số hoặc hỗn số ) .
Xem thêm : giải trắc nghiệm phương trình logarit

c) Tính các góc của tam giác ABC (lấy nguyên kết quả trên máy).

Xem thêm: Tra Ý Nghĩa 3 Số Cuối Điện Thoại Chính Xác Tới 99,999%

Mọi Người Cũng Xem   Chế độ của nhân viên hợp đồng theo Nghị định 68/2000/NĐ-CP

d ) Viết phương trình đường thẳng là phân giác của góc BAC ( thông số góc lấy tác dụng với hai chữ số ở phần thập phân )

*

Bài 6: (2 điểm)

Cho ba đường tròn với ba tâm A, B, C tiếp xúc nhau và cùng tiếp xúc với một đường thẳng ( như hình vẽ ). Biết nửa đường kính của đường tròn tâm A và tâm B lần lượt là R1 = 25,68 cm và R2 = 46,75 cm. Tính gần đúng nửa đường kính R của đường tròn tâm C .

*

Bài 7: (2 điểm)

Cho P ( x ) = x3 + ax2 + bx – 1 .
a ) Xác định số hữu tỉ a và b với
*
sao cho P ( x ) = 0 .
b ) Với giá trị a, b tìm được hãy tìm các nghiệm còn lại của P ( x ) .
Xem thêm : Slide Đồ Án Tốt Nghiệp Mẫu, 10 Mẫu Slide Đồ Án Tốt Nghiệp

Bài 8: (2 điểm)

Cho điểm E nằm trên cạnh AC của tam giác ABC. Qua E kẻ ED, EF lần lượt song song với BC và AB ( D thuộc AB ; F thuộc BC ). Đặt diện tích quy hoạnh các tam giác ADE và CEF lần lượt là S1 và S2. Tính diện tích quy hoạnh tam giác ABC, biết S1 = 101 cm2 ; S2 = 143 cm2 .

Bài 9: (2 điểm)

Cho
*
a. Tính un + 2 theo un + 1 và un
b. Tính u24, u25, u26

Bài 10: (2 điểm)

Giải phương trình:

*

lingocard.vn
Mời bạn đánh giá!
Lượt tải: 6.552 Lượt xem: 7.078 Dung lượng: 276 KB
Liên kết tải về

Mọi Người Cũng Xem   Các loại chi phí ở chung cư và một số thông tin liên quan bạn nên biết

Đề thi học sinh giỏi Giải toán trên Máy tính Casio cấp tỉnh Đăk Nông môn Toán lớp 9 (2008 – 2009) lingocard.vn Xem
Tài liệu tham khảo khác
Chủ đề liên quan
Mới nhất trong tuần
Tài khoản Giới thiệu Điều khoản Bảo mật Liên hệ Facebook Twitter DMCA
meta.vn.
Bản quyền © 2021 lingocard.vn. Giữ toàn quyền.Không được sao chép hoặc sử dụng hoặc phát hành lại bất kỳ nội dung nào thuộc lingocard.vn

Xem thêm bài viết thuộc chuyên mục: Cách tính

Điều hướng bài viết

Related Posts

About The Author

Add Comment