Lý thuyết lôgarit – https://hoasenhomes.vn

1. Định nghĩa

Cho hai số dương a, b với \ ( a \ ne1 \ ). Nghiệm duy nhất của phương trình \ ( { a ^ x } = b \ ) được gọi là \ ( { \ log _a } b \ ) ( tức là số \ ( \ alpha \ ) có đặc thù là \ ( { a ^ \ alpha } = b \ ) ) .Như vậy \ ( { \ log _a } b = \ alpha \ Leftrightarrow { a ^ \ alpha } = b \ ) .

Ví dụ: \({\log _4}16 = 2\) vì \({4^2} = 16\).

2. Lôgarit thập phân và lôgarit tự nhiên

Lôgarit cơ số 10 còn được gọi là lôgarit thập phân, số log10b thường được viết là logb hoặc lgb .Lôgarit cơ số \ ( e \ ) ( \ ( e = \ mathop { \ lim } \ limits_ { n \ to + \ infty } { \ left ( { 1 + \ dfrac 1 n } \ right ) ^ n } \ ) ≈ 2,718281828459045 ) còn được gọi là lôgarit tự nhiên, số logeb thường được viết là lnb .

3. Tính chất của lôgarit

Lôgarit có các đặc thù rất đa dạng chủng loại, hoàn toàn có thể chia ra thành các nhóm sau đây :1 ) Lôgarit của đơn vị chức năng và lôgarit của cơ số :Với cơ số tùy ý, ta luôn có loga1 = 0 và logaa = 1 .2 ) Phép mũ hóa và phép lôgarit hóa theo cùng cơ số ( mũ hóa số thực α theo cơ số a là tính aα ; lôgarit hóa số dương b theo cơ số a là tính logab ) là hai phép toán ngược nhau .\ ( ∀ a > 0 \, ( a \ ne \ ) 1 ), \ ( ∀ b > 0 \ ), \ ( { a ^ { { { \ log } _a } b } } = b \ )\ ( ∀ a > 0 \, ( a \ ne 1 ) \ ), \ ( { \ log _a } { a ^ \ alpha } = α \ )3 ) Lôgarit và các phép toán : Phép lôgarit hóa biến phép nhân thành phép cộng, phép chia thành phép trừ, phép nâng lên lũy thừa thành phép nhân, phép khai căn thành phép chia, đơn cử làVới \ ( \ forall a, { b_1 }, { b_2 } > 0, a \ ne 1 \ ) ta có :+ ) \ ( { \ log _a } \ left ( { { b_1 } { b_2 } } \ right ) = { \ log _a } { b_1 } + { \ log _a } { b_2 } \ )+ ) \ ( { \ log _a } \ left ( { \ dfrac { { { b_1 } } } { { { b_2 } } } } \ right ) = { \ log _a } { b_1 } – { \ log _a } { b_2 } \ )+ ) \ ( ∀ a, b > 0 \, ( a \ ne 1 ), \ ) \ ( ∀ α \ ) ta có :\ ( { \ log _a } { b ^ \ alpha } = \ alpha. { \ log _a } b \ )\ ( { \ log _a } \ root n \ of b = \ dfrac { 1 } { n }. { \ log _a } b \ )

Mọi Người Cũng Xem   Tính cách thương hiệu là gì? Làm thế nào để xác định được nó?

Ví dụ: Tính \(A = {\log _2}\dfrac{{15}}{2} – 2{\log _2}\sqrt 3 \).

Ta có:

\ ( \ begin { array } { l } A = { \ log _2 } \ dfrac { { 15 } } { 2 } – 2 { \ log _2 } \ sqrt 3 \ \ \, \, \, \, \, = { \ log _2 } 15 – { \ log _2 } 2 – 2. \ dfrac { 1 } { 2 } { \ log _2 } 3 \ \ \, \, \, \, \, = { \ log _2 } \ left ( { 3.5 } \ right ) – 1 – { \ log _2 } 3 \ \ \, \, \, \, \, = { \ log _2 } 3 + { \ log _2 } 5 – 1 – { \ log _2 } 3 \ \ \, \, \, \, \, = { \ log _2 } 5 – 1 \ end { array } \ )4 ) Đổi cơ số : Có thể chuyển các phép lấy lôgarit theo những cơ số khác nhau về việc tính lôgarit theo cùng một cơ số chung, đơn cử là\ ( ∀ a, b, c > 0 \, ( a, c \ ne1 ) \ ), \ ( { \ log _a } b = \ dfrac { { { \ log } _c } b } { { { \ log } _c } a } \ ) .Đặc biệt \ ( ∀ a, b > 0 \, ( a, b \ ne1 ) \, { \ log _a } b = \ dfrac { 1 } { { { \ log } _b } a } \ )\ ( ∀ a, b > 0 \, ( a \ ne1 ), ∀ α, β \, ( α \ ne 0 ) \ ) ta có :\ ( { \ log _ { { a ^ \ alpha } } } b = \ dfrac { 1 } { \ alpha } { \ log _a } b \ )\ ( { \ log _ { { a ^ \ alpha } } } { b ^ \ beta } = \ dfrac { \ beta } { \ alpha } { \ log _a } b \ )

\ ( { \ log _a } \ dfrac { 1 } { b } = – { \ log _a } b \ left ( { 0 < a \ ne 1 ; b > 0 } \ right ) \ )\ ( { \ log _a } \ sqrt [ n ] { b } = { \ log _a } { b ^ { \ frac { 1 } { n } } } = \ dfrac { 1 } { n } { \ log _a } b \ ) \ ( \ left ( { 0 < a \ ne 1 ; b > 0 ; n > 0 ; n \ in { N ^ * } } \ right ) \ )\ ( { \ log _a } b. { \ log _b } c = { \ log _a } c \ Leftrightarrow { \ log _b } c = \ dfrac { { { { \ log } _a } c } } { { { { \ log } _a } b } } \ ) \ ( \ left ( { 0 < a, b \ ne 1 ; c > 0 } \ right ) \ )\ ( { \ log _a } b = \ dfrac { 1 } { { { { \ log } _b } a } } \ Leftrightarrow { \ log _a } b. { \ log _b } a = 1 \ ) \ ( \ left ( { 0 < a, b \ ne 1 } \ right ) \ )\ ( { \ log _ { { a ^ n } } } b = \ dfrac { 1 } { n } { \ log _a } b \ ) \ ( \ left ( { 0 < a \ ne 1 ; b > 0 ; n \ ne 0 } \ right ) \ )

Ví dụ: Tính \(B = 3{\log _8}12 – 2{\log _2}3 + 12{\log _{16}}\sqrt[3]{3}\)

Mọi Người Cũng Xem   Cách tính diện tích đất trong sổ đỏ? Mẹo đo đạc đất đai đơn giản nhất

Ta có :\ ( \ begin { array } { l } B = 3 { \ log _8 } 12 – 2 { \ log _2 } 3 + 12 { \ log _ { 16 } } \ sqrt [ 3 ] { 3 } \ \ \, \, \, \, \, = 3 { \ log _ { { 2 ^ 3 } } } 12 – 2 { \ log _2 } 3 + 12. { \ log _ { { 2 ^ 4 } } } \ sqrt [ 3 ] { 3 } \ \ \, \, \, \, \, = 3. \ dfrac { 1 } { 3 } { \ log _2 } 12 – 2 { \ log _2 } 3 + 12. \ dfrac { 1 } { 4 } { \ log _2 } \ sqrt [ 3 ] { 3 } \ \ \, \, \, \, \, = { \ log _2 } 12 – 2 { \ log _2 } 3 + 3 { \ log _2 } \ sqrt [ 3 ] { 3 } \ \ \, \, \, \, \, = { \ log _2 } 12 – { \ log _2 } { 3 ^ 2 } + { \ log _2 } { \ left ( { \ sqrt [ 3 ] { 3 } } \ right ) ^ 3 } \ \ \, \, \, \, \, = { \ log _2 } 12 – { \ log _2 } 9 + { \ log _2 } 3 \ \ \, \, \, \, \, = { \ log _2 } \ dfrac { { 12.3 } } { 9 } \ \ \, \, \, \, \, = { \ log _2 } 4 \ \ \, \, \, \, \, = { \ log _2 } { 2 ^ 2 } \ \ \, \, \, \, \, = 2 \ end { array } \ )

Hệ quả:

a ) Nếu \ ( a > 1 ; b > 0 \ ) thì \ ( { \ log _a } b > 0 \ Leftrightarrow b > 1 ; \ ) \ ( { \ log _a } b < 0 \ Leftrightarrow 0 < b < 1 \ ) . b ) Nếu \ ( 0 < a < 1 ; b > 0 \ ) thì \ ( { \ log _a } b < 0 \ Leftrightarrow b > 1 ; \ ) \ ( { \ log _a } b > 0 \ Leftrightarrow 0 < b < 1 \ ) .

c) Nếu \(0 < a \ne 1;b,c > 0\) thì \({\log _a}b = {\log _a}c \Leftrightarrow b = c\).

Chú ý:

Logarit thập phân \ ( { \ log _ { 10 } } b = \ log b \ left ( { = \ lg b } \ right ) \ ) có rất đầy đủ đặc thù của logarit cơ số \ ( a \ ) .

Related Posts

About The Author

Add Comment