Cách Tính Nguyên Hàm Bằng Máy Tính Thế Lực, Tính Nhanh Nguyên Hàm

Cách Tính Nguyên Hàm Bằng Máy Tính Thế Lực, Tính Nhanh Nguyên Hàm

1) MỞ ĐẦU VỀ NGUYÊN HÀM VÀ TÍCH PHÂN
Hôm nay mình nhận được 1 câu hỏi của thầy Bình Kami, một câu hỏi về tính quãng đường của một vật chuyển động thẳng biến đổi đều, câu hỏi đã được xuất hiện trong đề thi minh họa của BGD-ĐT năm 2017
Một ô tô đang chạy với vận tốc 10(m/s) thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t)= -2t+10 (m/s), trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được bao nhiêu mét ?
A. 15m
B. 20m
C. 25m
D. 40m

Giải
Xem nào, khi xe dừng lại tốc độ sẽ về 0 hay 0 = 2 t + 10 vậy thời hạn xe còn vận động và di chuyển thêm được là 5 ( s ). Vậy quãng đường s = v. t = 10.5 = 50 ( m ) mà xe chạy chậm dần vậy sẽ phải nhỏ hơn 50 ( m ), chắc là 40 ( m ) phải không nhỉ ?

Để chắc chắn, có lẽ mình phải lập 1 bảng mô tả quãng đường :
Mốc 0 Hết giây thứ 1 Hết giây thứ 2 Hết giây thứ 3 Hết giây thứ 4 Hết giây thứ 5
Vận tốc 10→8 8→6 6→4 4→2 2→0
Quãng đường 9 7 5 3 1
Như vậy tổng quãng đường xe đi được khi vận tốc giảm đến 0 là 9+7+5+3+1=25 (m)
Cách này có vẻ tin cậy hơn nhiều, nhưng mất của mình thời gian đến hơn 2 phút !!! Vậy còn cách gì nhanh hơn không nhỉ ?

Thầy BìnhKami e làm được rồi .
Đang xem : Cách tính nguyên hàm bằng máy tính thế lực

Minh Nguyệt đã giải được bài toán và tìm ra đáp án chính xác25 (m), rất tốt về mặt kết quả nhưng về mặt thời gian tính lại hơi lâu. Bài này ta có thể hoàn thành trong thời gian 20(s) nhờ 1 công cụ gọi là tích phân
$S = intlimits_0^5
ight)dt} = 25,left( m
ight)$
Ta bấm máy tính như sau :
Khởi động chức năng tính tích phân:
Nhập biểu thức cần tính tích phân và nhấn nút =

*

Máy tính sẽ cho chúng ta kết quả là 25 (m). Chỉ mất 20(s)
thật tuyệt vời phải không nào !!!

Tích phân là công cụ gì mà hay vậy ạ ? ? ?
Tích phân là 1 trong những công cụ tuyệt vời nhất mà nền toán học đã tạo ra, sử dụng tích phân hoàn toàn có thể tính được quãng đường, tốc độ của 1 vật thể hoặc hoàn toàn có thể tính được diện tích quy hoạnh của 1 hình rất phức tạp ví dụ như hình tròn trụ, hình tam giác, hình e líp … thì còn có công thức nhưng diện tích quy hoạnh của mặt ao hồ hình thù phức tạp thì chỉ có tích phân mới giải quyết và xử lý được, hoặc tính thể tích của 1 khoang tầu thủy có hình dạng phức tạp thì lại phải nhờ đến tích phân. Tích phân văn minh được nhà toán học Anh Isac Newton và nhà toán học Pháp Laibơnit công bố khoảng chừng cuối thế kỉ 17 nhưng người đặt nền móng cho sự hình thành và tăng trưởng của Tích phân là nhà toán học, vật lý học, triết học, thiên văn học thiên tài người Hi Lạp Ac-si-met Tích phân chia làm 2 dạng : Tích phân bất định ( không cận ) thường được biết tới tên là Nguyên hàm và Tích phân xác lập ( có cận ) thường được biết đến với tên Tích phân mà các e sẽ được học ở học kì 2 lớp 12 .

2) CÁCH TÍNH NGUYÊN HÀM
Xây dựng công thức tính nguyên hàm :
Ta có $left( }
ight)’ = 5$ vậy ta nói nguyên hàm của $5$ là $$ kí hiệu $int dx} = + C$
Tương tự $left(
ight)’ = cos x$ vậy ta nói nguyên hàm của cosx là sinx, kí hiệu $int $
Tổng quát : $int $

VD1- Hàm số $Fleft( x
ight) = }}$ là nguyên hàm của hàm số nào :
A. $fleft( x
ight) = }$
B. $fleft( x
ight) = 2x.}$
C. $fleft( x
ight) = frac}}}}}$
D. $fleft( x
ight) = }} – 1$

GIẢI

Thưa thầy, bài này e làm được ạ !
Đầu tiên e tính đạo hàm của F(x), vì F(x) là một hàm hợp của e nên em áp dụng công thức $left( }
ight)’ = .u’$ ạ .
Khi đó : $F’left( x
ight) = left( }}}
ight)’ = }}.left( }
ight)’ = 2x.}}$
Vậy F(x) là nguyên hàm của hàm của hàm $fleft( x
ight) = 2x.}}$ và ta chọn đáp án B ạ.

Mọi Người Cũng Xem   Cách Đo Khối Lượng Đá Cầu Thang Cho Ngôi Nhà Của Bạn

VD2- Nguyên hàm của hàm số $y = x.}$ là :
A. $2}left(
ight) + C$
B. $frac}left( }
ight) + C$
C. $2}left( }
ight) + C$
D. $frac}left(
ight) + C$

GIẢI

Thưa thầy, chúng ta sẽ thử lần lượt, với đáp án A thì $Fleft( x
ight) = 2}left(
ight)$. Nhưng việc tính đạo hàm của F(x) là $2}left(
ight)$thì e thấy khó quá ạ, e quên mất công thức ạ !!

Trong phòng thi gặp nhiều áp lực, nhiều khi chúng ta đột nhiên bị quên công thức đạo hàm hay bản thân chúng ta chưa học phần này thì làm sao ?? Thầy sẽ cho các e một thủ thuật Casio để các e quên công thức vẫn biết đâu là đáp án đúng :
Ta biết F’(x)=f(x) việc này đúng với mọi x thuộc tập xác định
Vậy sẽ đúng với x=1 chẳng hạn. Khi đó F’(1)=f(1)
Tính giá trị f(1)= 7,3890…

*

Tính đạo hàm F’(1) với từng đáp án, bắt đầu từ đáp án A là $Fleft( x
ight) = 2}left(
ight)$

*

Vậy ta được kết quả F’(1)=-14.7781… đây là 1 kết quả khác với f(1) → Đáp án A sai
Tính đạo hàm F’(1) của đáp án B với $Fleft( x
ight) = frac}left( }
ight)$

*

Ta thu được kết quả giống hệt f(x) vậy F’(x)=f(x) hay $Fleft( x
ight) = frac}left( }
ight)$ là nguyên hàm của f(x) → Đáp án B là đáp án chính xác

Bình luận :
• Nếu F(x) là 1 nguyên hàm của f(x) thì F(x) +C cũng là 1 nguyên hàm của hàm f(x) vì $left(
ight)’ = F’left( x
ight) + C’ = F’left( x
ight) + 0 = F’left( x
ight) = fleft( x
ight)$
• Việc sử dụng Casio dể tính nguyên hàm đặc biệt hữu ích đối với với những bài phức tạp, áp dụng nhiều công thức tính đạo hàm cùng một lúc, và tránh nhầm lẫn trong việc tính toán !!

VD3- Tìm nguyên hàm của hàm số $fleft( x
ight) = sqrt $ :
A. $int left(
ight)sqrt + C} $
B. $int left(
ight)sqrt + C} $
C. $int sqrt + C} $
D. $int sqrt + C} $

GIẢI

Nhắc lại 1 lần nữa công thức quan trọng của chúng ta. Nếu F(x) là 1 nguyên hàm của f(x) thì F’(x)=f(x)
Khi đó ta chọn 1 giá trị x=a bất kì thuộc tập xác định thì F(a)=f(a)
Chọn giá trị x=2 chẳng hạn (thỏa điều kiện $2x – 1 ge 0 Leftrightarrow x ge frac$)
Khi đó f(2)=1,732

*

Theo đúng quy trình ta sẽ chọn đáp án F(x) ở 4 đáp án A, B, C, D nếu đáp án nào thảo mãn F’(2)= f(2)=1,732
Thử với đáp án A khi đó $Fleft( x
ight) = fracleft(
ight)sqrt $

*

Vậy F’(2)=3,4641…là một giá trị khác f(2)=1,732… điều đó có nghĩa là điều kiện F’(x)=f(x) không được đáp ứng. Vậy đáp án A là sai .
Ta tiếp tục thử nghiệm với đáp án B. Khi này $Fleft( x
ight) = fracleft(
ight)sqrt $

*

Ta được F ’ ( 2 ) = 1,732 … giống hệt f ( 2 ) = 1,732 … có nghĩa là điều kiện kèm theo F ’ ( x ) = f ( x ) được thỏa mãn nhu cầu. Vậy đáp án đúng chuẩn là B

Cách tham khảo : Tự luận
Dựa vào đặc điểm của hàm f(x) ta thấy $sqrt $ về mặt bản chất sẽ có dạng $
ight)^}}$. Ta nghĩ ngay đến công thức đạo hàm $left( }
ight)’ = n.}.u’$
+)Trong công thức đạo hàm này số mũ của u bị giảm đi 1. Vậy hàm F(x) có số mũ lớn hơn hàm f(x) là 1 đơn vị. Vậy F(x) phải có số mũ là $frac$
+)Vậy chỉ có đáp án A hoặc B là thỏa mãn vì $left(
ight)sqrt =
ight)^}}$
Ta thực hiện phép đạo hàm $left< ight)}^}}} ight>’ = frac
ight)^}}left(
ight)’ = 3sqrt $
Cân bằng hệ số ta được $fracleft< ight)}^}}} ight>’ = sqrt $. Điều này có nghĩa nguyên hàm $Fleft( x
ight) = frac
ight)^}} = fracleft(
ight)sqrt $ → B là đáp án đúng.

Bình luận :
• Nếu chúng ta có một chút kiến thức cơ bản về đạo hàm thì việc sử dụng máy tính Casio để tìm đáp án sẽ nhẹ nhàng hơn. Chúng ta chỉ việc thử với đáp án A và B vì 2 đáp án này mới có số mũ là $frac$
• Điều đặc biệt của dạng này là số mũ của nguyên hàm F(x) lúc nào cũng lớn hơn số mũ của hàm số f(x) là 1 đơn vị.

Xem thêm : Đồ Án Chưng Cất Tinh Dầu Sả Năng Suất 150K gmẻ, Tailieuxanh

Chúng ta có thể áp dụng 1 cách linh hoạt. Ví dụ tìm nguyên hàm của hàm số $y = frac}$ thì cũng vô cùng đơn giản. Ta thấy $y = m.frac}$ về mặt bản chất thì $frac}$ là x mũ $ – frac$ vậy chắc chắn nguyên hàm phải là x mũ $ – frac + 1 = frac$ hay là $sqrt x $ Ta xét đạo hàm gốc $left(
ight)’ = frac}$ (*) Việc còn lại chỉ là cân bằng hệ số, để tạo thành $frac}$ ta nhân cả 2 vế của (*) với 2m là xong. Khi đó $left(
ight)’ = frac}$ Thật đơn giản phải không !!

Mọi Người Cũng Xem   Phương pháp xác định trọng tải, công suất của phương tiện không đăng kiểm, không đăng ký để xử phạt vi phạm hành chính giao thông đường thủy nội địa

VD4- Một nguyên hàm của hàm số $fleft( x
ight) = frac + 3x – 2}}$ là :
A. $2 + 3x – 2ln x$
B. $frac}} – frac} + ln x$
C. $frac}} + 3x – 2ln x + 1$
D. $frac + x}}}}$

GIẢI

Ta chọn 1 giá trị x thuộc tập xác định $left(
ight)$ là x=5
Khi đó f(5)=7.6

*

Với đáp án C ta có $Fleft( x
ight) = frac}} + 3x – 2ln x + 1$ có

*
Ta được F ’ ( 5 ) = 7.6 = f ( 5 ). Vậy đáp án C là đáp án đúng mực .

Cách tham khảo : Tự luận
Hàm $fleft( x
ight) = frac + 3x – 2}}$ có tên gọi là hàm phân thức hữu tỉ với bậc của tử là bậc 2 lớn hơn bậc của mẫu là bậc 1
Phương pháp giải : Thực hiện 1 phép chia tử số cho mẫu số ta được: $fleft( x
ight) = x + 3 – frac$. Khi đó hàm số trở thành dạng đơn giản và ta dễ dàng tìm được nguyên hàm.

Xem thêm : Tài Liệu Khóa Luận Văn Tốt Nghiệp Ngôn Ngữ Trung, Kho Luận Văn Chuyên Ngành Ngôn

Có $left( }} + 3x}
ight)’ = x + 3$ vậy $frac}} + 3x$ là nguyên hàm của x+3 Có $left(
ight)’ = frac$. Cân bằng hệ số ta có : $left(
ight)’ = – frac$ vậy -2lnx là nguyên hàm của $ – frac$
Tổng kết $left( }} + 3x – 2ln x}
ight)’ = x + 3 – frac = frac + 3x – 2}}$

Hay $frac}} + 3x – 2ln x$ là một nguyên hàm cần tìm thì $frac}} + 3x – 2ln x + 5$cũng là một nguyên hàm
Cân bằng hệ số ta được $fracleft< ight)}^}}} ight>’ = sqrt $. Điều này có nghĩa nguyên hàm $Fleft( x
ight) = frac
ight)^}} = fracleft(
ight)sqrt $ → B là đáp án đúng.

Bình luận

Tìm nguyên hàm của 1 hàm phân thức hữu tỉ là 1 dạng toán hay nếu tất cả chúng ta biết nguyên tắc tư duy, và nếu không biết thì sẽ rất khó khăn vất vả. Ta phải nhớ thế này, nếu phân thức hữu tỉ có bậc ở tử lớn hơn hoặc bằng bậc ở mẫu thì ta sẽ thực thi 1 phép chia tử số cho mẫu số thì sẽ thu được 1 hàm số cực kỳ dễ tính nguyên hàm. Ngoài ra còn 1 dạng hay nữa khi phân thức hữu tỉ có mẫu số nghiên cứu và phân tích được thành nhân tử thì ta sẽ giải quyết và xử lý thế nào ? Mời các bạn xem ví dụ tiếp theo .

VD5 – Nguyên hàm của hàm số $fleft( x
ight) = frac – 4}}$ là :
A. $ln left(
ight) – 2ln left(
ight) + C$
B. $2ln left(
ight) + ln left(
ight) + C$
C. $ln left| }}}
ight| + C$
D. $ln left| }}}
ight| + C$

GIẢI

Ta chọn 1 giá trị x thuộc tập xác định $left(
ight)$ là x=5
Khi đó f(5)=7.6

*

Với đáp án C ta có $Fleft( x
ight) = frac}} + 3x – 2ln x + 1$ có

*

Ta được F’(5)=7.6=f(5). Vậy đáp án C là đáp án chính xác.
Cách tham khảo : Tự luận
Hàm $fleft( x
ight) = frac – 4}}$ có tên gọi là hàm phân thức hữu tỉ có mẫu số phân tích được thành nhân tử

Phương pháp giải : Chia phân thức phức tạp ban đầu thành các phân thức phức tạp

+) Có $frac – 4}} = frac
ight)left(
ight)}}$
+) Ta sẽ tách phân thức lớn này thành 2 phân thức nhỏ đơn giản : $frac – 4}} = m.frac} + n.frac}$
+) Để tách được ta lại dùng phương pháp hệ số số bất định: $frac – 4}} = m.frac} + n.frac} Leftrightarrow frac – 2}} = frac
ight) + nleft(
ight)}}
ight)left(
ight)}}$
$ Leftrightarrow 4 = mleft(
ight) + nleft(
ight)$ $ Leftrightarrow 0x + 4 = xleft(
ight) + 2m – 2n$ $ Leftrightarrow left 0 = m + n\ 4 = 2m – 2n end
ight. Leftrightarrow left m = 1\ n = – 1 end
ight.$

Vậy $frac – 4}} = frac} – frac}$
Thành công trong việc đưa về 2 phân số đơn giản, ta nhớ đến công thức $left(
ight)’ = frac,left(
ight) = frac.u’$

Dễ dàng áp dụng:
$left< ight)} ight>’ = frac}.left(
ight)’ = frac}$ và $left< ight)} ight>’ = frac}.left(
ight)’ = frac}$
Tổng hợp $left< ight) – ln left( ight)} ight>’ = frac} – frac}$ $left( }}}
ight|}
ight)’ = frac – 4}}$
Vậy nguyên hàm của f(x) là $Fleft( x
ight) = ln left| }}}
ight| + C$

Bình luận :
• Qua ví dụ trên chúng ta thấy được sự hữu hiệu của phương pháp hệ số bất định, 1 phân số phức tạp sẽ được chia thành 2 hoặc 3 phân số đơn giản .
• Về nguyên tắc thì có thể ra 1 bài tích phân hàm phân thức được chia thành hàng chục phân số đơn giản nhưng trong trương trình học THPT thì cùng lắm là chia làm 3 phân thức con. Chúng ta hãy cùng theo dõi phép chia sau :
$frac – 5x – 1}} – 2 – x + 2}} = frac – 5x – 1}}
ight)left( – 1}
ight)}} = frac – 5x – 1}}
ight)left(
ight)left(
ight)}} = frac} + frac} + frac}$
$ Leftrightarrow $ Tử số vế trái = Tử số vế phải
$ Leftrightarrow 4 – 5x – 1 = mleft( – 1}
ight) + nleft( – x – 2}
ight) + pleft( – 3x + 2}
ight)$
$ Leftrightarrow left 4 = m + 2n + p\ – 5 = – n – 3p\ – 1 = – m = 2p end
ight. Leftrightarrow left m = 1\ n = 2\ n = 1 end
ight.$
Cuối cùng ta thu được : $frac – 5x – 1}} – 2 – x + 2}} = frac} + frac} + frac}$
Và ta dễ tính được nguyên hàm của $frac} + frac} + frac}$ là $ln left(
ight) + 2ln left(
ight) + ln left(
ight) + C$
Thật hiệu quả phải không !!

Mọi Người Cũng Xem   Cách Tính Tuổi Người Chết, Thời Gian Chết Theo Cung Mệnh, Xem Người Chết Ở Tuổi Tốt Hay Xấu

VD6- Nguyên hàm của hàm số f(x)=sinx.cosx trên tập số thực là:
A. $fraccos 2x + C$
B. $ – fraccos 2x + C$
C. $ – sin x.cos x$
D. $ – fracsin 2x + C$

GIẢI

Chuyển máy tính Casio về chế độ Radian (khi làm các bài toán liên quan đến lượng giác)
Chọn 1 giá trị x bất kì ví dụ như $x = frac$
Khi đó giá trị của f(x) tại $x = frac$ là $fleft( }
ight) = 0,4330…$

*

Theo đáp án A thì $Fleft( x
ight) = fraccos 2x$. Nếu đáp án A đúng thì $F’left( }
ight) = fleft( }
ight)$. Ta tính được F(2)=-0,4430… là một giá trị khác $fleft( }
ight)$. Vậy đáp án A sai
Ta tiếp tục thử nghiệm với đáp án B.

*

Ta được $F’left( }
ight) = 0,4430… = fleft( }
ight)$. Vậy đáp án chính xác là B

Cách tham khảo: Tự luận

Dễ thấy cụm sinxcosx rất quen thuộc và ta nhớ đến công thức có nhân đôi: sin2x=2sinxcosx Từ đó ta rút gọn $fleft( x
ight) = fracsin 2x$ Cái gì đạo hàm ra sin thì đó là cos!! Ta nhớ đến công thức : $left(
ight)’ = – u’.sin u$ Áp dụng $left(
ight)’ = – sin 2x.left(
ight)’ = – 2sin 2x$ Cân bằng hệ số bằng cách chia cả 2 vế cho -4 ta được : $left( cos 2x}
ight)’ = fracsin 2x$ Từ đây ta biết được $Fleft( x
ight) = – fraccos 2x$

Bình luận :

Khi sử dụng máy tính Casio để làm bài tập liên quan đến hàm lượng giác thì ta nên đổi sang chế độ Radian để phép tính của chúng ta đạt độ chuẩn xác cao.. Ngoài cách gộp hàm f(x) theo công thức góc nhân đôi, ta có thể tư duy như sau: => Nếu ta coi sinx=u thì cosx=u’ vậy ta nhớ tới công thức $left( }
ight)’ = n.}.u’$ => Ta thiết lập quan hệ $left( ^2}x}
ight)’ = 2sin xcos x$ hay $left( ^2}x}
ight)’ = sin xcos x$
Vậy ta biết $Fleft( x
ight) = fracx$ tuy nhiên so sánh đáp án thì lại không có đáp án giống. Vậy ta tiếp tục biến đổi 1 chút. $fracx = fracfrac} = – fraccos 2x + frac$ $ Rightarrow Fleft( x
ight)$ cũng là $ – fraccos 2x$

BÀI TẬP TỰ LUYỆN

Bài 1- Nguyên hàm $int ^2}x}}^4}x}}dx} $ bằng :
A. $x + C$
B. $frac an x + C$
C. $3x + C$
D. $fracx + C$

Bài 2- Nguyên hàm của hàm số $fleft( x
ight) = $ là :
A. $frac^x}}}} + C$
B. $.ln 2016 + C$
C. $x}.ln 2016 + C$
D. $frac^}}}} + C$

Bài 3- Hàm số nào sau đây không phải là nguyên hàm của hàm số $fleft( x
ight) = frac
ight)}}
ight)}^2}}}$ :
A. $frac + x – 1}}}$
B. $frac – x – 1}}}$
C. $frac + x + 1}}}$
D. $frac}}}$

Bài 4- Tìm nguyên hàm của hàm số $int + frac – 2sqrt x }
ight)} dc$
A. $frac}} + 3ln left| x
ight| – fracsqrt } + C$
B. $frac}} + 3ln x – fracsqrt } + C$
C. $frac}} + 3ln left| x
ight| + fracsqrt } + C$
D. $frac}} – 3ln left| x
ight| – fracsqrt } + C$

Bài 5- Không tồn tại nguyên hàm :
A. $int – x + 1}}}} dx$
B. $int + 2x – 2} dx} $
C. $int $
D. $int }dx} $

Bài 6- $int }}dx} $ bằng :
A. $2
ight)^}} + C$
B. $fracsqrt
ight)}^3}} + C$
C. $frac }} + C$
D. $fracsqrt
ight)}^3}} + C$

Bài 7- Nguyên hàm của hàm số $fleft( x
ight) = left( }}
ight)$ là :
A. $ + 2017} + C$
B. $ – 2017} + C$
C. $ + frac}} + C$
D. $ – frac} + C$

Bài 8- Họ nguyên hàm của $int } – x – 1}}dx} $ :
A. $fracln left|
ight| + fracln left|
ight| + C$
B. $ – fracln left|
ight| + fracln left|
ight| + C$
C. $fracln left|
ight| – fracln left|
ight| + C$
D. $ – fracln left|
ight| + fracln left|
ight| + C$

Xem thêm bài viết thuộc chuyên mục: Cách tính

Điều hướng bài viết

Related Posts

About The Author

Add Comment